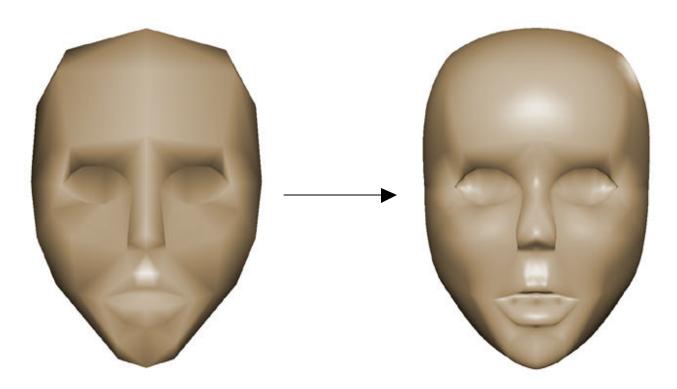
Curved PN Triangles

Alex Vlachos

AVlachos@ati.com

Jörg Peters

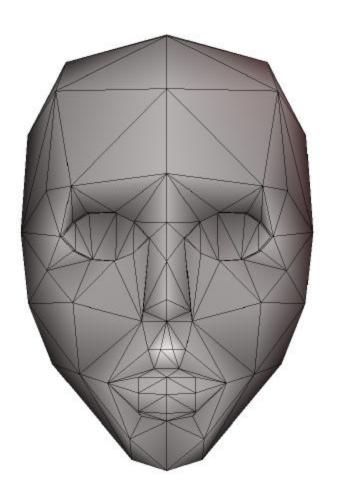
jorg@cise.ufl.edu

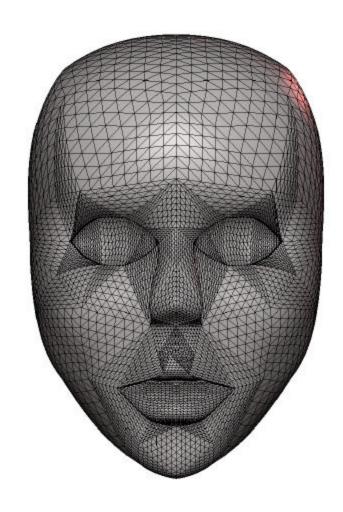


Outline

- Motivation
- Constraints
- Surface Properties
- Performance
- Demo

Quick Demo





- Software Developers
 - Must fit into their art and engineering pipelines
 - Must be compatible with work already in progress
 - Must be backward compatible
- API's: OpenGL & Microsoft's Direct3D
 - Expressible through the API concisely
 - Minimal change (vertex buffers and index buffers)
- Hardware
 - Performance
 - Cost
 - Fits current architecture

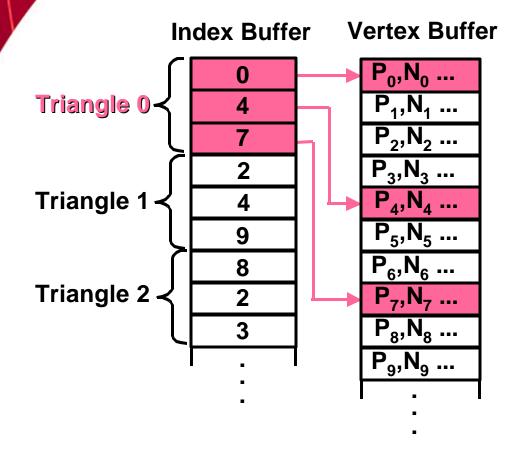
Goal: Improve Visual Quality

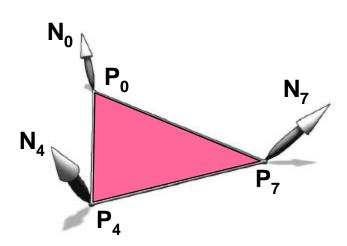
- No paradigm change for developers
 & artists
 - Do not require developers to store geometry differently (triangles)
 - Wide array of art content is usable
 - Backwards compatible
- Minimize change to API's
 - Use existing data structures
 - No explicit connectivity information
- Fit existing hardware designs

Rendering Curved Surfaces

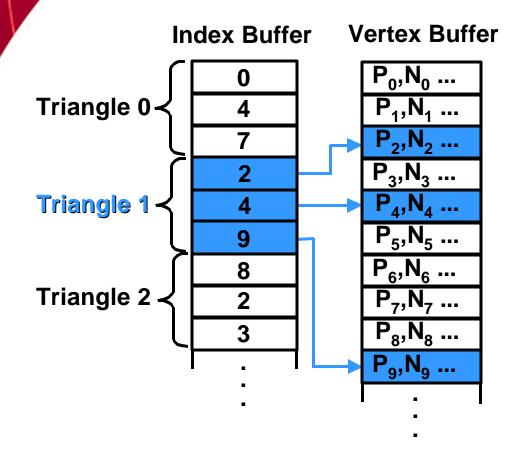
- Visual cues
 - Smooth silhouettes
 - Lighting cues on the interior of polygons
- Separability of normal and position
 - Familiar paradigm: bump mapping
 - Visual Smoothness
- Curved PN Triangles provide
 - Improved silhouettes
 - Additional sample points for per-vertex operations
 - Lighting operations (approximate Phong shading)
 - Vertex shaders

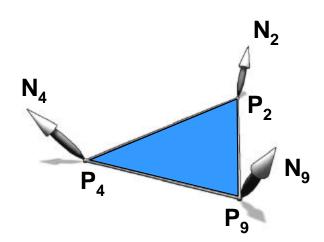
Vertex and Index Buffers



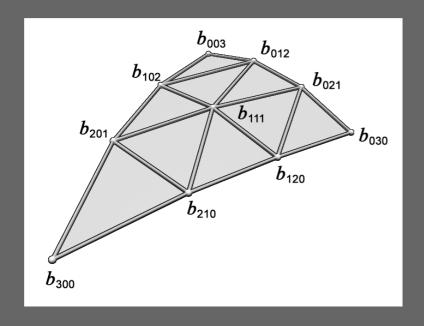


Vertex and Index Buffers





Geometry: cubic Bézier (de Casteljau) form



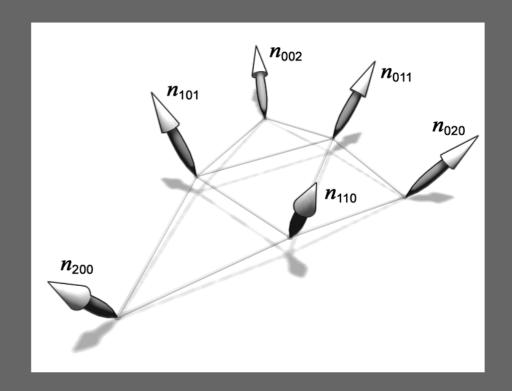
 $\begin{array}{ll} \mathbf{b}: & R^2 \mapsto R^3 \\ b_{ijk} = \text{control points} = \text{coefficients} \\ \\ \text{control net} \end{array}$

$$\mathbf{b}(u,v) = \begin{cases} b_{003}v^3 \\ +b_{102}3wv^2 & +b_{012}3uv^2 \\ +b_{201}3w^2v & +b_{111}6wuv & +b_{021}3u^2v \\ +b_{300}w^3 & +b_{210}3w^2u & +b_{120}3wu^2 & +b_{030}u^3 \end{cases} \qquad w = 1 - u - v$$

Normal: quadratic Bézier (de Casteljau) form

$$\mathbf{n}: \quad R^2 \mapsto R^3$$

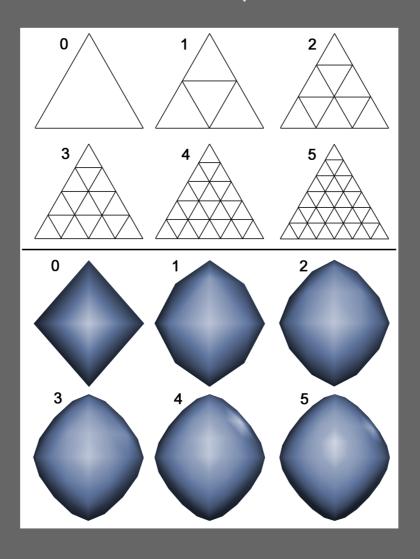
$$\mathbf{n}(u,v) = \begin{cases} n_{002}v^2 \\ +n_{101}2wv \\ +n_{200}w^2 \\ +n_{110}2uw \\ +n_{020}u^2 \end{cases}$$



(or n linear == Phong shading)

Evaluation API

 $lod \in \{0, 1, 2, \dots\}$ = number of evaluation points on one edge minus two



Insertion into Graphics Pipeline

On chip

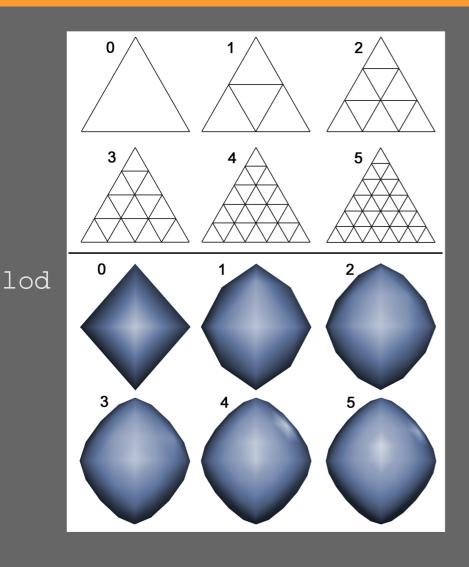
Vertex and primitive assembly

Vertex shading

Triangle setup

Rasterization

Insertion into Graphics Pipeline



On chip

Vertex and primitive assembly

. in 1 triangle (P & N)

Curved PN triangle tesselation

. out $(1 \circ d + 1)^2$ microtriangles

Vertex shading

Triangle setup

Rasterization

Why this choice?

Constraints:

- Isolation (cannot access mesh neighbors)
- Fast Evaluation (including normal)
- Modeling range (smoother contours and better shading)
- Symmetry (aesthic)

Isolation

Fast Evaluation

Modeling range

Symmetry

Decision:

 Rules out subdivision or surface spline

Continuous normal without neighbor?
(Prescribe normal along boundary

but shape can be poor)

.

Isolation

Fast Evaluation

Modeling range

Symmetry

Decision:

- No subdivision or surface spline C^1 ? (can't see neighbor!)
- No rational surface (normal of)
 rational surface is expensive
 [Gregory, Chiyokura, Grimm &
 Hughes]
 not multiple pieces [CloughTocher, Shirman-Sequin, PowellSabin]

 \rightarrow polynomial

.

Isolation

Fast Evaluation

Modeling range

Symmetry

Decision:

- No subdivision or surface spline C^1 ? (can't see neighbor!)
- Not rational parametrization not multiple pieces
 → polynomial
- 'shape preservation'
 Inflections: geometry cubic, normal quadratic predictability: want curved PN triangle 'close to' the flat triangle

Isolation

Fast Evaluation

 Modeling range (shape preservation)

Symmetry

Decision:

- No subdivision or surface spline
 C¹? (can't see neighbor!)
- Not rational surface not multiple pieces
 → polynomial
- Inflections: geometry cubic, normal quadratic predictable: prove curved patch is 'close to' the flat triangle
- 3-sided Bézier patch.

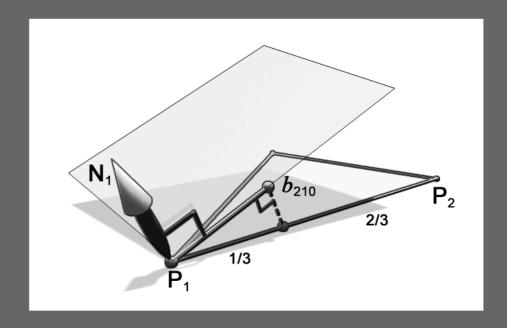
Geometry coefficients

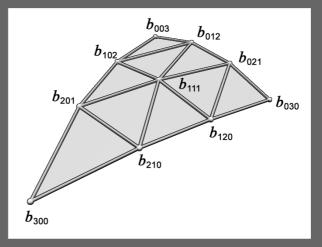
$$b_{300} = P_1$$
 etc.

$$b_{210} = (2P_1 + P_2 - w_{12}N_1)/3$$

$$w_{ij} = (P_j - P_i) \cdot N_i \in \mathbf{R}$$

$$\begin{array}{l} \pmb{b_{111}} = E + (E-V)/2 \\ . \qquad E = (b_{210} + b_{120} + b_{021} \\ . \qquad + b_{012} + b_{102} + b_{201})/6 \\ . \qquad V = (P_1 + P_2 + P_3)/3. \end{array}$$
 (Farin 83)



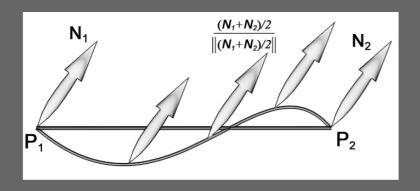


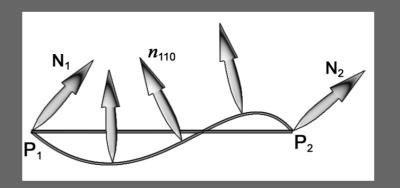
Normal coefficients

Linear

VS

Quadratic Normal



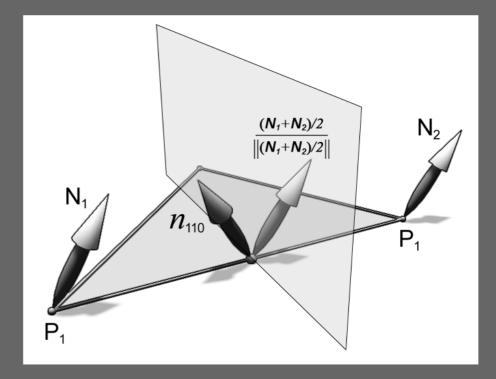


Normalize

$$h_{110} = \frac{N_1 + N_2}{2} - \frac{v_{12}}{2}(P_2 - P_1)$$

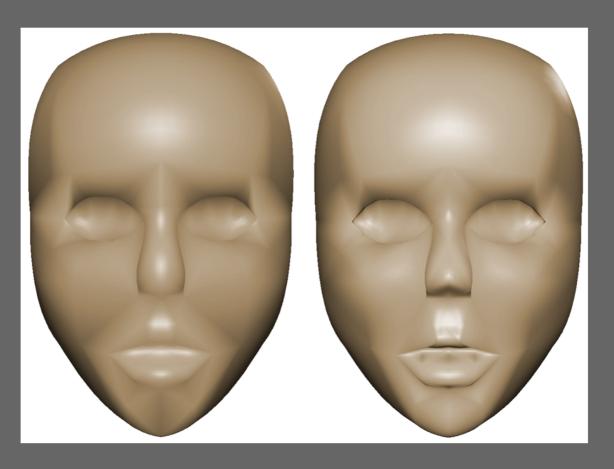
$$v_{ij} = 2 \frac{(P_j - P_i) \cdot (N_i + N_j)}{(P_j - P_i) \cdot (P_j - P_i)} \in \mathbf{R}$$

(VanOverveld, Wyvill)



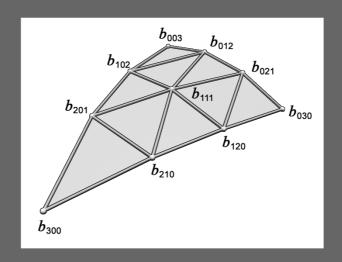
Normal coefficients

Linear vs Quadratic Normal

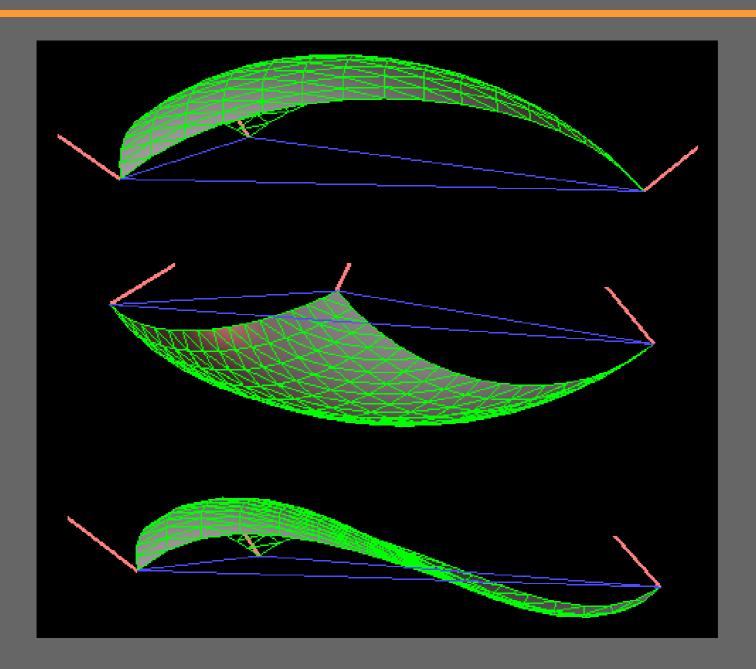


Properties

- Interpolates P_i and N_i .
- b_{210} on circle with center $P_1 + L$ and radius ||L||. $L := (P_1 P_2)/6$
- Quadratic precision: b_{111} .
- Surface is smooth at corners;
 Surface looks smooth (except possibly at silhouttes)



PN triangle calisthenics



Performance

- Geometry, textures, display lists, shaders etc compete for memory
- Bandwidth savings
- Now able to actually feed high performance transform/shader engines

Basic Advantages

- Coarse triangulations yield geometry compression
- Level of detail (LOD)
- Geometry looks smoother!

Summary

- API-friendly
- Developer-friendly
- Provides a vast visual improvement to existing and future content
 - Improve silhouettes
 - Improve lighting calculations
- Advantage of geometry compression and memory savings
- Overall performance is increased

