" 1.4 Pixel Shaders

Jason L. Mitchell

3D Application Research Group Lead
JasonMaat i . com

/T:

1.4 Pixel Shaders - ATI Technologies

Qutline

Pixel Shader Overview
e 1.1 Shader Review

* 1.4 Pixel Shaders
* Unified Instruction set
* Flexible dependent texture read

* Image Processing

* 3D volume visualizations
* Dynamic transfer functions

* Effects on 3D Surfaces
* Per-pixel lighting
* Diffuse
* Specular — Dealing with halfangle denormalization

* Per-pixel Fresnel Term

* Bumpy Environment mapping
* Bumped Cube mapping
* Projected dudv

* Per-pixel anisotropic lighting
* ShadelLab Tool
* Good for playing around with shaders in real-time

* Generates Vertex Shader code on the fly to feed pixel shader
T

1.4 Pixel Shaders - ATI Technologies

The Road to ps.2.0 in DX9

&.O 1.11.2 1'3j

'
4 Textures

Fixed Address
Ops

8 Color Ops

/T:

1.4

6 Textures (12
fetches)

Unified
Instruction Set

16 Instructions

1.4 Pixel Shaders - ATI Technologies

2.0

8 Textures (16
fetches)

Expanded
Unified
Instruction Set

64 Instructions

What is a Pixel Shader?

* A Pixel Shader is a set of microcode that
you download to the GPU. These little
programs execute on the GPU and
operate on pixels and texels like the
legacy multitexture pipeline

* Much more flexible than the legacy
multitexture pipeline

* Multitexturing is still available, though
not at the same time as Pixel Shading.
Set the current pixel shader to O to use
traditional multitexture

/T:

1.4 Pixel Shaders - ATI Technologies

Pixel Shader API

Assemble and create the shader:

D3DXAssenbl eShader (str Qocodes,
| strlen(strQpcodes), 0, NULL, &m pD3DXBuf Shader,

&pBuf fer);

m pd3dDevi ce- >Cr eat ePi xel Shader (
(DWORD*) m pD3DXBuf Shader - >Get Buf f er Poi nter (),
&m hPi xel Shader);

Set the current pixel shader:
m _pd3dDevi ce- >Set Pi xel Shader (m_hPi xel Shader) ;

Clean up on the way out:
m pd3dDevi ce- >Set Pi xel Shader (0) ;
m_pd3dDevi ce->Del et ePi xel Shader (m_hPi xel Shader) ;

/T:

1.4 Pixel Shaders - ATI Technologies

ular

Texture Coordinates
Diffuse & Spec

Temporary

Register File DireCth
o Pixel
Shader

| S~

Fog

S 2

Alpha Blending

5 3

Frame Buffer

/T:

Pixel Shader In's and Qut’'s

Constants

Inputs are texture coordinates,
constants, diffuse and specular

Several read-write temps

Output color and alphain rO.rgb
and r0.a

Output depth is in r5.r if you use
texdepth (v 1.4)

No separate specular add when
using a pixel shader

* You have to code it up
yourself in the shader

Fixed-function fog is still there
Followed by alpha blending

1.4 Pixel Shaders - ATI Technologies

Constants
* Eight read-only constants (c0..c7)

* Range -1to +1

* If you pass in anything outside of
this range, it just gets clamped

* A given co-issue (rgb and a)
Instruction may only reference up to
two constants

* Example constant definition syntax:

def cO0, 1.0f, 0O.5f, -0.3f, 1.0f
V4[]

1.4 Pixel Shaders - ATI Technologies

Interpolated Quantities

* Diffuse and Specular (vO and v1)
°* Low precision and unsigned

° In ps.1.1 through ps.1.3, available only
“color shader”

°* Not available before ps.1.4 phase marker
* Texture coordinates
* High precision signed interpolators

* Can be used as extra colors, signed
vectors, matrix rows etc

/T:

1.4 Pixel Shaders - ATI Technologies 8

1.1 Model
* Four Textures
* Color Shader
* Low Range and precision
* 8 Instructions
* Preceded by Address Shader

* Fixed set of modes like bumped
cubic environment mapping, a
pair of dp3s etc

* In fact, you can write them all
down...

/T:

1.4 Pixel Shaders - ATI Technologies

One texture

Texcoord as col or

Mmc a clip plane

The 1.1 Address Shaders

One instruction

ps.1.1 ps.1.1 ps.1.1
tex tO texcoord t0 texkill tO
; Two textures ; Two texcoords as colors ; Mnmic two clip planes ; One texbem
ps. 1.1 ps.1.1 ps.1.1 ps.1.1
tex tO texcoord tO texkill tO tex tO
tex t1 texcoord t1 texkill t1 texbemtl, tO . .
Two Instructions
;. One texbem ; Col or AR remappi ng ; Col or GB remapping Sanpl e and texcoord
ps.1.1 ps.1.1 ps.1.1 ps.1.1
tex tO tex tO tex tO tex tO
texbem t1, tO texreg2ar t1, tO texreg2gb t1, tO texcoord t1

; 3 textures ;

ps.1.1 ps.1.1
tex t0 texkill tO
tex t1 texkill t1
tex t2 texkill t2

Mnmic 3 clip planes ;

texcoord t2

2 sanples & a texcoord ;

One texbem and a texcoord

ps.1.1 ps.1.1
tex t0 tex t0
tex t1l texbem t1, tO

texcoord t2

ps.1.1
tex t0
texbemtl, tO
tex t2

; One texbemand a sanple ;
ps.
tex t0
texbemtl, tO
texcoord t2

One texbem and a texcoord

1.1

; One texbem and a sanple
ps.1.1

tex tO

texbem t1, tO

tex t2

ps.1.1
tex tO
texcoord t1l
texcoord t2

; Sanple and 2 texcoords

; Three texcoords as colors
ps.1.1

texcoord tO

texcoord t1

texcoord t2

; 3x2 matrix multiply
ps.1.1

tex tO

texnBx2pad t1, tO
texnBx2tex t2, tO

1.4 Pixel Shaders - ATI Technologies

Three instructions

10

The 1.1 Address Shaders

Four Instruction Shaders

;4 textures

ps.1.1
tex t0
tex t1
tex t2
tex t3

; Mmc clip planes

ps.1.1

texkill
texkill
texkill
texkill

to
tl
t2
t3

ps.1.1
tex t0
tex t1
tex t2
texcoord t3

3 Sanpl es and one texcoord ;

ps.1.1
tex tO
tex t1
texcoord t2
texcoord t3

2 Sanples and 2 texcoords

; 1 texbemand 2 sanpl es
ps.1.1
tex t0
texbemt1,
tex t2
tex t3

to

1 Sanpl e and 3 texcoords Two t exbens 4 texcoords 1 texbem a sanple and a texcoord 1 texbem and 2 texcoords

ps.1.1 ps.1.1 ps.1.1 ps.1.1 ps.1.1

tex tO tex tO texcoord tO tex tO tex tO

texcoord t1 texbemtl, tO texcoord t1 texbemtl, tO texbemtl, tO

texcoord t2 tex t2 texcoord t2 tex t2 texcoord t2

texcoord t3 texbemt3, t2 texcoord t3 texcoord t3 texcoord t3
; Two texbem s ; One texbent and two sanpl es ; 1 texbeni, a sanple and a texcoord ; 3x2 multiply and texcoord
ps.1.1 ps.1.1 ps. 1.1 tex tO
tex tO tex tO tex tO
texbem t1, tO texbem t1, tO texbem t1, tO texm8x2pad t1, 10
tex t2 tex t2 tex t2 texmBx2tex t2, t0
texbem t3, t2 tex t3 texcoord t3 texcoord t3
;1 texbenmi and 2 texcoords 3x2 multiply & sanple : 3x3 nultiply : 3x3 matrix multiply and : 3x3 matrix multiply and
ps.1.1 ps. 1.1 ps.1.1 ; reflect constant vector ; reflect interpolated vector
tex to tex t0 tex to tex tO tex to
texbem t1, tO texnBx2pad t1, tO texmBx3pad t1, tO texnmBx3pad t1, t0 texnBx3pad t1, tO
texcoord t2 texmBx2tex t2, tO texmBx3pad t2, t0 texnBx3pad t2, t0 texnmBx3pad t2, t0
texcoord t3 tex t3 texnBx3tex t3, tO t exnBx3spec t3, tO t exnBx3vspec t3, t0

1.4 Pixel Shaders - ATI Technologies

11

1.2 Shaders

Still CISC like 1.1
e Same instruction count
* 4 new tex instructions
* texreg2rgb
* texdp3tex
° texdp3
* texm3x3
* 1 new argument modifier
* .b replicate blue
* Valid only in an alpha op
* 2 new arithmetic instructions
* cmp — Conditionally chooses between s1 and
s2 based on sO compared with zero
* dp4 — 4-element dot product

1.4 Pixel Shaders - ATI Technologies

12

1.3 Shaders

e One additional tex instruction
* texm3x2depth t2, t0

* Performs two dot products to obtain z and w.
The depth for the current pixel is set to z/w. If
w == 0, theresultis 1.0. If z>w theresultis
clamped to 1.0.

* Example
tex t0
texm3x2pad t1, tO
texm3x2depth t2, t0

/T:

1.4 Pixel Shaders - ATI Technologies 13

1.4 Model

Flexible, unified instruction set

* Think up your own math and just do it rather than
try to wedge your ideas into a fixed set of modes

* Flexible dependent texture fetching
°* More textures

°* More instructions

* High Precision

* Range of at least -8to +8

* Well along the road to DX9

1.01.11.21.3 1.4 2.0

/T

1.4 Pixel Shaders - ATI Technologies 14

1.4 Pixel Shader Structure

\

Texture Register File
texid 14, 15 } e Optional Sampling

10 dp3 t0.r, tO, t4
dp3 t0.g, t1, t4

t1 dp3 t0.b, t2, t4
dp3_x2 t2.rgb, t0, t3 °
1o rab o, 12 — Address Shgder |
t2 dp3 tl.rgb, tO, tO * Up to 8 instructions
mad t1l.rgb, -t3, t1, t2
_
t3 phase
texld t0O, tO : :
y toxld i1 t1 * Optional Sampling
texld t2, t5 e Can be dependent reads
5 ml 0, t0, 12 e Color Shader

mad tO, tO, t2.a, t1l

* Up to 8instructions

/T:

1.4 Pixel Shaders - ATI Technologies 15

1.4 Texture Instructions

Mostly just data routing. Not ALU operations per se

"o texld

* Samples data into a map

* texcrd

* Moves high precision signed data into a temp

register (r,)

* Higher precision than vO or v1

* texkill
* Kills pixels based on sign of register components
* Fallback for parts that don’t have clip planes

* texdepth

* Substitute value for this pixel’s z!

/T:

1.4 Pixel Shaders - ATI Technologies 16

texld vs tex

* Both cause aregister to be filled with
sampled data from a map

* tex
* Unary op
* texld
°* Binary op
* Context is associated with destination
register

* That means texture handle, filtering
modes etc

* Explicitly specifies dependent reads at
the top of phase 2

/T:

1.4 Pixel Shaders - ATI Technologies 17

texcrd vs texcoord

* texcoord clamps input to 0..1 range
* Basically behaves like a color

* You have to scale and bias into 0..1 In
your vertex shader

* Very annoying if you're also using the
texm3x2 instructions, as you have
already found

* texcrd does not clamp 0..1

* Takes same input range as texm3x2 type
Instructions

* Retains pixel pipeline’s native precision
m which is higher than colors
9

1.4 Pixel Shaders - ATI Technologies 18

texkill

* Another way to Kill pixels
* If you're just doing a clip plane,
use a clip plane
* As a fallback, use texkill for

chips that don’t support user
clip planes

* Pixels are killed based on the
sign of the components of
registers

/T

1.4 Pixel Shaders - ATI Technologies

19

/T:

texdepth

* Substitute a register
value for z

* Imaged based rendering
* Depth sprites

1.4 Pixel Shaders - ATI Technologies

20

1.4 Pixel Shader ALU Instructions

d, s0O, sl [/ sum
d, s0O, sli [/ difference
mul d, s0O, sl [/ nodul at e
° nad d, sO, sl1, s2 [/ sO * s1 + s2
* Irp d, sO, sl1, s2 [l s2 + s0*(sl1l-s2)
°* nov d, sO /[l d = s0O
* cnd d, sO, sl1, s2 [l d =(s2 >0.5) ?s0: sl
* cnp d, sO, sl1, s2 [/l d = (s2 >=0) ? sO : si
° dp3 d, s0O, sl /] sO-sl replicated to d.rgba
°* dp4 d, sO, sl /[l s0-s1 replicated to d.rgba
* pbem d, sO, sl1, s2 [/ Macro simlar to texbem

/T:

1.4 Pixel Shaders - ATI Technologies

Argument Modifiers

Negate I,
° Invert 1-r,
* Unsigned value in source is required
* Bias (_bias)
* Shifts value down by %
* Scale by 2 (_ x2)
* Scales argument by 2
* Signed Scaling (_bx2)
* Dbias followed by x2

* Shifts value down and scales data by 2 like the implicit
behavior of D3DTCOP_DOTPRODUCT3 in Set TSS()

* Channel replication
e r.r,r,.g,r..borr_.a
* Useful for extracting scalars out of registers
* Not just in alpha instructions like the .b in ps.1.2

/T:

1.4 Pixel Shaders - ATI Technologies 22

Instruction Modifiers

- Multiply result by 2

- Multiply result by 4

- Multiply result by 8

- Divide result by 2

- Divide result by 4

- Divide result by 8
Saturate result to 0..1

* sat may be used alone or combined

with one of the other modifiers. 1.e.
mad d8 sat

/T:

1.4 Pixel Shaders - ATI Technologies

Write Masks

Any channels of the destination
register may be masked during the
write of the result

* Useful for computing different
components of a texture coordinate
for a dependent read

* Example:
dp3 rO0.r, tO, t4
nov r0.g, t0.a

* We'll show more examples of this

/T:

1.4 Pixel Shaders - ATI Technologies

24

Range and Precision

ps.l.4 range is at least -8 to +8
e Determine with MaxPi xel Shader Val ue

* Pay attention to precision when doing
operations that may cause errors to build up

* Conversely, use your range when you need it
rather than scale down and lose precision.
Filter kernel intermediate results are one case.

* Your texture coordinate interpolators are your
high precision data sources. Use them.

e Sampling an 8 bit per channel texture (to
normalize a vector, for example) gives you
back a low precision result

1.4 Pixel Shaders - ATI Technologies 25

cnd and cmp

* cnd d,s0,s1,s2; d=(s0>0.5)?sl:s2
* Conditionally chooses between s1 and s2

* In DirectX 8.1, cnd can now perform a component wise

comparison of sO to 0.5 in order to select s1 or s2's
component:

* Fors0=1[0.4,0.5,0.51, -5.6],d =[s2.r, s2.g, s1.b, s2.3]

* cmp d,s0,s1,s2; d=(s0>=0)?sl1:s2
* Conditionally chooses between s1 and s2
* Fors0=[-04,0.0,5.0,-6.3],d=[s2.r,sl1.g,sl.b, s2.3]
* New Instruction in DirectX 8.1
e Useful for absolute value: cmp d, sO, sO, -s0

/T:

1.4 Pixel Shaders - ATI Technologies 26

Examples: Image Filters

Use on 2D images in general

Use as post processing pass over 3D scenes
rendered into textures

* Luminance filter for Black and White effect

* Edge filters for non-photorealistic rendering

* Glare filters for soft look (see Fiat Lux by Debevec)
* Opportunity for you to customize your look

Rendering to textures is fundamental. You need
to get over your reluctance to render into textures.

Becomes especially interesting when we get to
high dynamic range

1.4 Pixel Shaders - ATI Technologies 27

/T:

Luminance Filter

* Different RGB recipes give different looks
* Black and White TV
* Black and White film
* Sepia
* Run through arbitrary transfer function using a
dependent read for “heat signature”

* Acommon recipeis Lum = .3r +.59qg + .11b

ps. 1.4

def cO, 0.30f, 0.59f, 0.11f, 1.0f
texld r0, tO

dp3 r0, r0, cO

1.4 Pixel Shaders - ATI Technologies

28

Luminance Filter

Original Image Luminance Image

1.4 Pixel Shaders - ATI Technologies

29

Multitap Filters

* Effectively code filter kernels right into
the pixel shader

* Pre offset taps with texture coordinates

* For traditional image processing, offsets
are a function of image/texture dimensions
and point sampling is used

°* Or compose complex filter kernels from
multiple bilinear kernels

/T:

1.4 Pixel Shaders - ATI Technologies

Edge Detection Filter

* Roberts Cross Gradient Filters

ps. 1.4 110 O]1

texld r0, t0 // Center Tap 0]-1 -1] 0

texld rl, t1 // Down & Ri ght
texld r2, t2 // Down & Left

add r1, r0, -rl
t0

add r2, r0, -r2 o (1

cnrmp rl, rl1, rl1, -r1l

cnp r2, r2, r2, -r2

add x8 r0, rl1, r2

/T:

1.4 Pixel Shaders - ATI Technologies

Gradient Filter

Original Image 8 x Gradient Magnitud

P

1.4 Pixel Shaders - ATI Technologies

e

32

Gradient from Color

ps. 1.4

def cO, 0.30f, 0.59f, 0.11f, 1.0f

texld r0, tO /'l Center Tap

texld rl, t1l /1 Down & Ri ght

texld r2, t2 /1 Down & Left

dp3 r3, r0, cO /] Conpute Lum nances

dp3 r1, r1, cO

dp3 r2, r1, cO

add r1, r3, -rl /'l Conpute Differences

add r2, r3, -r2

cmp rl, r1, rl1, -rl1 // Absolute Val ues

cnpr2, r2, r2, -r2

add x8 rl1, rl1, r2

phase

mul rO.rgb, r0, 1-r1 // Conposite with original rgb
+mov r0.a, cO0.a

/T:

1.4 Pixel Shaders - ATI Technologies

Gradient from Color

Original Image Original x Inverted
Gradient Magnitude

A i Pt 7y

e

1.4 Pixel Shaders - ATI Technologies

34

Five Tap Blur Filter

ps.1.4

def cO, 0.2f, 0.2f, 0.2f, 1.0f

texld rO, t0 // Center Tap t3 t4
texld rl, t1 // Down & Right t0
texld r2, t2 // Down & Left t2 t1

texld r3, t3 // Up & Left

texld r4, t4 // Up & Right

add r0, r0, r1

add r2, r2, r3

add r0, r0, r2
add r0, r0, r4
mul r0O, r0O, cO

/T:

1.4 Pixel Shaders - ATI Technologies

Five Tap Blur Filter

Original Image Blurred Image

1.4 Pixel Shaders - ATI Technologies 36

Ping-Pong Blur Filter

Render to
Ping Texture

Ping Pong
back and forth

Original Scene

/T:

Blurred Image

1.4 Pixel Shaders - ATI Technologies 37

Glare Filter

* Composite thresholded blur image back on to original scene

|
Image from by Debevec
. .

1.4 Pixel Shaders - ATI Technologies

Glare Filter

* Composite thresholded image back on to original scene

Image from by Debevec

1.4 Pixel Shaders - ATI Technologies

Sepia Transfer Function

ps. 1.4

def cO, 0.30f, 0.59f, 0.11f, 1.0f
texld rO, tO

dp3 r0, r0, cO // Convert to Lum nance
phase

texld r5, r0O /| Dependent read

mov r0, rb5

.

1D Luminance to Sepia map

/T:

1.4 Pixel Shaders - ATI Technologies

Sepia Transfer Function

Original Image Sepia Tone Image

1.4 Pixel Shaders - ATI Technologies

41

Heat Signhature

1D Heat Signature Map
V4[]

1.4 Pixel Shaders - ATI Technologies

Heat Transfer Function

Heat input image Heat Signhature Image

1.4 Pixel Shaders - ATI Technologies 43

Volume Visualization

The visualization community starts with data that is
Inherently volumetric and often scalar, as it is acquired
from some 3D medical imaging modality

* As such, no polygonal representation exists and there
IS a need to “reconstruct” projections of the data
through direct volume rendering

* Last year, we demoed this on RADEON™ using volume
textures on DirectX 8.0

* One major area of activity in the visualization
community is coming up with methods for using
transfer functions, ideally dynamic ones, that map the
(often scalar) data to some curve through color space

* The 1D sepia and heat signature maps just shown are

examples of transfer functions
/T

1.4 Pixel Shaders - ATI Technologies

Volume Visualization

* On consumer cards like RADEON™, volume rendering is
done by compositing a series of “shells” in camera space
which intersect the volume to be visualized

* A texture matrix is used to texture map the shells as they
slice through a volume texture

m View frustum and VolViz Shells

1.4 Pixel Shaders - ATI Technologies 45

Dynamic Transfer Functions

* With 1.4 pixel shaders, it is very
natural to sample data from a 3D
texture map and apply a transfer
function via a dependent read

* Transfer functions are usually 1D
and are very cheap to update
Interactively

/T:

1.4 Pixel Shaders - ATI Technologies

Dynamic Transfer Functions

Scalar Data Transfer Function Applied

1.4 Pixel Shaders - ATI Technologies 47

More Examples: Lighting

Four Diffuse P@r‘Pixel Lights in one Pass

/T:

1.4 Pixel Shaders - ATI Technologies

Per-pixel N-L and Attenuation

1.4 Pixel Shaders - ATI Technologies 49

Per-pixel N-L and Attenuation

texld r1, tO ; Nor nal
texld r2, tl ; Qubic Normalized Tangent Space Light Direction
texcrd r3.rgh, t2 ; Wrld Space Light D rection.

; Unit length is the light's range.

dp3_sat rl.rgb, rl bx2, r2 bx2 ; NL

dp3 r3.rghb, r3, r3 ; (World Space Light D stance)”2
phase

Dependent |texid ro0, tO © Base

Read —» | texld r3, r3 : Light Falloff Function
mul _x2 rd.rgb, r1, r3 ; falloff * (NL)

add rd.rgb, r4, c7 ; += anbi ent
mul r0.rgb, ; base * (anbient + (falloff*N L))

/T:

1.4 Pixel Shaders - ATI Technologies 50

Variable Specular Power

Constant specular power Variable specular power

1.4 Pixel Shaders - ATI Technologies 51

Variable Specular Power
Per-pixel (N-H)X with per-pixel variation of k

120.0 —— * Base map with albedo in

RGB and gloss in alpha

* Normal map with xyz in
RGB and k in alpha
*N-H” k map

* Should also be able to
apply a scale and a bias to
the map and in the pixel
shader to make better use

of the resolution

‘4—NH

0.0 1.0

/T:

1.4 Pixel Shaders - ATI Technologies

Maps for per-pixel variation of k shader

. i .4
[= E i T —

poo 4

F

Gloss in alpha
k =120

FrFF

Normals in RGB k in alpha

/T:

1.4 Pixel Shaders - ATI Technologies

ariable Specular Power

ps.1.4
texld rl1, tO ; Nor mal
texld r2, t1 ;
texcrd r3.rgh, t2 ; Tangent
dp3_sat r5.xyz, rl bx2, r2 bx2
dp3_sat r2.xyz, rl bx2, r3
nmov r2z.y, rl.a
phase

Dependent |{texld r0, t0O ; Base

Read —»|texld r3, r2 ; Specular NHxK
add r4.rgb, r5, c7 ;
nul ro.rgb, r0, r4 :
+mul _ x2 r0.a, rO0.a, r3.a ;
add ro.rgb, r0, r0.a

/T:

Nor mal i zed Tangent
Space Hal fangl e vector

Space L vector

- N-L
; N-H

Specul ar Exponent

map

+= anbi ent

base * (anmbient + N-L))
A oss map * specul ar
(base*(anbient + N L)) +
(A oss*Hi ghlight)

1.4 Pixel Shaders - ATI Technologies

Anisotropic lighting

* We know how to light lines and Zockier et al |

anisotropic materials by doing
two dot products and using the
results to look up the non-linear
parts in a 2D texture/function
(Banks, Zockler, Heidrich)

This was done per-vertex using
the texture matrix

With per-pixel dot products and
dependent texture reads, we can
now do this math per-pixel and
specify the direction of
anisotropy in a map. Heidrich et al

1.4 Pixel Shaders - ATI Technologies 55

Per-pixel anisotropic lighting

* This technique involves computing
the following for diffuse and specular
illumination:

Diffuse: OL — (L-T)2
Specular: OL - (L-T)201 — (V-T)2 = (L-T)(V-T)

* These two dot products can be
computed per-pixel with the t exnBx2*
instructions or just two dp3sin 1.4

* Use this 2D tex coord to index into special map to evaluate
above functions

* At GDC 2001, we showed this limited to per-pixel tangents
in the plane of the polygon

* Here, we orthogonalize the tangents wrt the per-pixel
normal inside the pixel shader

/T:

1.4 Pixel Shaders - ATI Technologies 56

Per-pixel anisotropic lighting

* Use traditional normal map,
whose normals are in tangent
space

* Use tangent map

* Or use an interpolated tangent
and orthogonalize it per-pixel

* Interpolate V and L In tangent
space and compute coordinates
into function lookup table per
pixel.

/T:

1.4 Pixel Shaders - ATI Technologies

Per-pixel anisotropic lighting

Diffuse in RGB Specular in Alpha

1.4 Pixel Shaders - ATI Technologies

Anisotropic Lighting
Example: Brushed Metal

1.4 Pixel Shaders - ATI Technologies

Bumped Anisotropic Lighting

ps.1.4

def c0, 0.5f, 0.5f, 0.O0f,
texld r0, tO

texcrd r2.rgb, t1l

texcrd r3.rgb, t2

texld r4, tO

; Perturb anisotropy |ight
dp3 rl.xyz, r0_bx2, r4_bx2
mad r0.xyz, r4_bx2, rl, r0

; Calculate A . View and A L
dp3 r5.x, r2, r0
dp3 r5.yz, r3, r0

mad r5.rg, r5, c0, cO

; Diffuse Light Term
dp3_sat r4.rgb, r4_bx2, r2
phase

texld r2, r5

texld r3, tO

mul rd.rgb, r3, r4.b

mad rO.rgb, r3, r2.a, r4
mad r0.rgb, r3, c7, r0

1.4 Pixel Shaders -

1. of

; Contains direction of anisotropy in tangent space

; light vector
. View vector
; normal map

ing direction by nornmal
; Ani so. Nor mal

_bx2 ; Aniso - N(Aniso. Nornal)

ight for looking up into function map
; Performsecond row of matrix multiply
; Perform second row of matrix multiply to get

a

; 3-vector with which to sanple texture 3, which is

; a look-up table for aniso lighting
; Scale and bias for | ookup

;N L

; Anisotropic lighting function | ookup
; gloss nmap

; basemap * N. L

; += gl ossmap * specul ar

; += anmbi ent * basemap

ATI Technologies

60

Anisotropic Lighting
Example: Human Hair

* Direction of anisotropy map is used to light the hair
Highlights

computed in
pixel shader

1.4 Pixel Shaders - ATI Technologies

Bumpy Environment Mapping

Several flavors of this
* DX6-style EMBM

* Must work with projective texturing to be useful
* Could do DX6-style but with interpolated 2x2 matrix

* But thereally cool one is per-pixel doing a 3x3 multiply
to transform fetched normal into cube map space

All still useful and valid in different circumstances.

Can now do superposition of the perturbation maps for
constructive / destructive interference of waveforms

Really, the distinctions become irrelevant, as this all just
degenerates into “dependent texture reads” and the app
makes the tradeoffs between what it determines is “correct”
for a given effect

1.4 Pixel Shaders - ATI Technologies 62

Traditional EMBM

The 2D case is still valuable and not going away

* The fact that the 2x2 matrix is no longer required to be
“state” unlocks this even further.

* Works great with dynamic projective reflection maps for
floors, walls, lakes etc

* Good for refraction (heat waves, water effects etc.)

1.4 Pixel Shaders - ATI Technologies 63

Bumped Cubic Environment Mapping

* Interpolate a 3x3 matrix which represents a
transformation from tangent space to cube
map space

e Sample normal and transform it by 3x3 matrix
e Sample diffuse map with transformed normal

* Reflect the eye vector through the normal and
sample a specular and/or env map

* Do both
* Blend with a per-pixel Fresnel Term!

/T:

1.4 Pixel Shaders - ATI Technologies 64

Bumpy Environment Mapping

1.4 Pixel Shaders - ATI Technologies

Dependent
Reads

Bumpy Environment Mapping

texl d
texl d
texcrd
texcrd
texcrd
texcrd

phase

texl d
texl d
texl d
texl d

mul
mad

ro,
ri,
ra.
r2.
r3.
rbs.

to

t4
rgb,
rgb,
rgb,
rgb,

r4.r,
r4. g,
r4.b,
r3.rgb,
r3.rgb,
r2.rgb,
r2.rgb,

r2
to
r4
(0]

rz,
r3,
r4,
rs,

ril.rgb,
r0.rgb,

r4,
r2,
r3,

tl
t2
t3
t5
ro_bx2
ro_bx2
ro_bx2
rd, rl bx2
r4, r3
r4, r4
-rl bx2,
rs, r2
r3, rd_x2,

r2,

ri

Look up nornmal nap
Eye vector through normalizer
1st row of environnment matrix

cube map

[ight's range)

2st row of environnment matrix
3rd row of environnment matrix
Wrld space L (Unit length is
1st row of matrix nultiply
2nd row of matrix nmultiply
3rd row of matrix nmultiply
2(N- Eye)
7 2N(N- Eye)
: N-N
r3 ; 2N(N-Eye) - Eye(N-N)
Sanpl e cubic reflection map
Sanpl e base map
; Sanpl e cubic diffuse map
; Sanpl e gl oss nmap
Specul ar = G oss * Reflection
Base * Diffuse + Specul ar

1.4 Pixel Shaders - ATI Technologies

66

Per-Pixel Fresnel

Per-Pixel Per-Pixel Bumped Per-Pixel
Diffuse Environment map Fresnel

1.4 Pixel Shaders - ATI Technologies

Ghost/Glow Shader

Per-Pixel N-Eye
used to Index
into Glow Map

Glow Map (which gets multiplied by {0.1, 0.1, 0.5, 0.0, 1.0} to tint it ghostly green

/T:

1.4 Pixel Shaders - ATI Technologies

Ghost Shader

dp3 r5,

phase

nov rO0.rgb,

/T:

dp3 rd.r, r4,
dp3 r4.qg, r2,
dp3 r4. b, r3,

ro_bx2
ro_bx2
ro_bx2
r4, r1l

texld r2, r5

r2

1st row of matrix nmultiply
2nd row of matrix multiply
3rd row of matrix multiply
(N-Eye)

1.4 Pixel Shaders - ATI Technologies

Multi-light Shaders

Four Diffuse Pgr-Pixel Lights in ohe Pass

/T:

1.4 Pixel Shaders - ATI Technologies

4-light Shader

dp3_sat r2.rgb, rl1 bx2, r2 bx2 ; *= (N L1)
mul x2 r2.rgb, r2, cO ; *= Light Col or
dp3_sat r3.rgb, r1 bx2, r3 bx2 ; Light 2
mul _x2 r3.rgb, r3, cl

dp3_sat r4.rgb, rl1 bx2, r4 bx2 ; Light 3
mul x2 r4.rgb, r4, c2

phase

texld r0, tO

texld r5, t4

dp3_sat r5.rgb, r1 bx2, r5 bx2 ; Light 4
mul x2 r5.rgb, r5, c3

mul rl.rgb, r2, vO0.X ; Attenuate light 1
mad rl.rgb, r3, vO.y, rl ; Attenuate |ight 2
mad rl.rgb, r4, v0.z, rl ; Attenuate light 3
mad rl.rgb, r5 vO.w, rl ; Attenuate |ight 4
add rl.rgb, rl1, c7 ; += Anbi ent

mul r0O.rgb, rl, rO ; Modul ate by base map

/T:

1.4 Pixel Shaders - ATI Technologies

Reflection and Refraction Shader

Normal used to compute reflection and refraction rays in one pass |

1.4 Pixel Shaders - ATI Technologies

Reflection and Refraction

r, r4, r0O_bx2 ; 1st row of matrix nultiply
.g, r2, rOo bx2 ; 2nd row of matrix nultiply
b, r3, r0O_bx2 ; 3rd rowof matrix nultiply

.rgb, c0.g, -rl bx2 , Refract by cO = index
, of refraction fudge
, factor

.rgb, cO0.r, -r4, r5 , Refract by cO = index
, of refraction fudge
, factor

/T:

1.4 Pixel Shaders - ATI Technologies 73

Developing Pixel Shaders

* The good news is that since shaders are
a programming language they’re easier
to edit and debug on the fly than
complex multitexturing setups

* Usetools like ShadelLab to play around
with them interactively

* As Pixel Shaders grow in complexity
comparable to today’s vertex shaders,
we’ll need to address the language
Issues like we are at the vertex shader
level today. See Evan Hart’s talk right
after lunch for more on this.

/T:

1.4 Pixel Shaders - ATI Technologies 74

Shadelab

&M Shadel ab

=1ci x|

File

Dilfuge [v0) Constants [overidden by del instiuction:]

€ Cors @ Lt | | o[0100,0.00.0.00,000 [Jerfi00. 100100100 [] e2[050.020.010.000 []<3o75.000,000,000 | |
Specular (v1] o4 |0.00, 0.00, 0.00, 0.00 |:| 50,00, 0.00. 000, 0.00 D o 0,00, 10.00, .00, 0.00 [j 7 {0.00, 0,00, 0,00, 0.00 D Shage
" Colsz (% Lit ab
Tewmse Maps Tesure Comdinales Pizel Shader Code HAL Rendeded Results (ps1.4)

i- : Open., | Save., I

[bese} ATLTGA | 2D Tex Coned =l

! Driffuze only = |

: pe 1.4

bessdd o), 10

texl: Binnlga |2D Tex Coord j ey 1D, 1)

ka2 charset TGA [ED Tex Coord :J

tescdh fresnel tga [20 Tex Coord =]

tesd: nanwiayl lga |2|:‘I Tex Coord ﬂ

tenl ATILTGA |2|3' Tex Coord ﬂ o

Ch EviCe, \iew Fullscreen
|| acsa a'ad |

Azeembly Result

Success j

kd

1.4 Pixel Shaders - ATI Technologies

75

The Road to DX9

* 1.4 1s a good preparation for how
to think about DX9 pixel shaders

* Unified instruction set

* Higher precision

* Vectors, not colors

* Flexible dependent texture reads

/T:

1.4 Pixel Shaders - ATI Technologies

76

Summary

Pixel Shader Overview

e 1.4 Pixel Shaders

* Unified Instruction set
* Flexible dependent texture read

* Image Processing
e 3D volume visualizations
e Effects on 3D Surfaces

* Per-pixel lighting

* Per-pixel Fresnel Term

* Bumpy Environment mapping
* Per-pixel anisotropic lighting

e ShadelLab Tool

* Good for playing around with shaders in real-time

* Generates Vertex Shader code on the fly to feed pixel
shader

1.4 Pixel Shaders - ATI Technologies 7

Call To Action

* Use 1.4 pixel shaders in your
games when they are present

* Abstract your shader usage to the
point that shaders and shader
versions are just part of the
dataset

e Start thinking about pixel shaders
according to this model...it’s
where we’re going in DXO9.

/T:

1.4 Pixel Shaders - ATI Technologies 78

/T:

Acknowledgements

* Chris Brennan, Chris Oat, John
Isidoro and Dan Baker for
Insights and demos

1.4 Pixel Shaders - ATI Technologies

79

/T:

Questions

1.4 Pixel Shaders - ATI Technologies

80

